Multimodal Image Collection Visualization Using Non-negative Matrix Factorization

نویسندگان

  • Jorge E. Camargo
  • Juan C. Caicedo
  • Fabio A. González
چکیده

In this paper we address the problem of generating an image collection visualization in which images and text can be projected together. Given a collection of images with attached text annotations, we aim to find a common representation for both information sources to model latent correlations among the collection. Using the proposed latent representation, an image collection visualization is built, in which images and text can be projected simultaneously. The resulting image visualization allows to identify the relationships between images and text terms, allowing to understand the distribution of the collection in a more

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Multimodal representation, indexing, automated annotation and retrieval of image collections via non-negative matrix factorization

Massive image collections are increasingly available on the Web. These collections often incorporate complementary non-visual data such as text descriptions, comments, user ratings and tags. These additional data modalities may provide a semantic complement to the image visual content, which could improve the performance of different image content analysis tasks. This paper presents a novel met...

متن کامل

Interactive Semi-automated Method Using Non-negative Matrix Factorization and Level Set Segmentation for the BRATS Challenge

The 2016 BRATS includes imaging data on 191 patients diagnosed with low and high grade gliomas. We present a novel method for multimodal brain segmentation, which consists of (1) an automated, accurate and robust method for image segmentation, combined with (2) semi-automated and interactive multimodal labeling. The image segmentation applies Non-negative Matrix Factorization (NMF), a decomposi...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010